2025-08-04
Seed Diffusion: A Large-Scale Diffusion Language Model with High-Speed Inference
ABSTRACT
We present Seed Diffusion Preview, a large-scale language model based on discrete-state diffusion, offering remarkably fast inference speed. Thanks to non-sequential, parallel generation, discrete diffusion models provide a notable speedup to mitigate the inherent latency of token-by-token decoding, as demonstrated recently (e.g., Mercury Coder, Gemini Diffusion). Seed Diffusion Preview achieves an inference speed of 2,146 token/s over H20 GPUs while maintaining competitive performance across a sweep of standard code evaluation benchmarks, significantly faster than contemporary Mercury and Gemini Diffusion, establishing new state of the art on the speed-quality Pareto frontier for code models.
AUTHORS
Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang Yang, Hongli Yu, Xingwei Qu, Yuwei Fu, Jing Su, Ge Zhang, Wenhao Huang, Mingxuan Wang, Lin Yan, Xiaoying Jia, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Yonghui Wu, Hao Zhou
Featured Publications
View AllSeed LiveInterpret 2.0: End-to-end Simultaneous Speech-to-speech Translation with Your Voice
Seed Speech Team
2025-07-24
GR-3 Technical Report
Seed Robotics Team
2025-07-21
Seedance 1.0: Exploring the Boundaries of Video Generation Models
Seed Vision Team
2025-06-11